Face is the most important and most popular biometric used in many identification and verification systems. In these systems, for reducing recognition error rate, the quality of input images need to be as high as possible. Face Image Compliancy verification (FICV) is one of the most essential methods for this purpose. In this research, a brain functionality inspired model is presented for FICV using Haxby model, which is a face visual perception consistent model containing three bilateral areas for three different functionalities. As a result, contribution of this work is presenting a new model, based on human brain functionality, improving the compliancy verification of face images in FICV context. Perceptual understanding of an image is the motivation of most of the quality assessment methods, i.e., the human quality perception is considered as a gold standard and a perfect reference for recognition and quality assessment. The model presented in this work aims to make the operational process of face image quality assessment system closer to the performance of a human expert. Three basic modules have been introduced. Face structural information, for initial information encoding, is simulated by an extended Viola-Jones model. Face image quality assessment is presented by International Civil Aviation Organization (ICAO), in ICAO (ISO / IEC19794 -11) requirements’ compliancy assessment document. Like Haxby model, perception is performed through two distinct functional and neurological pathways, using Hierarchical Maximum pooling (HMAX) and Convolutional Deep Belief Networks (CDBN). Information storing and fetching for training are similar to their corresponding modules in brain. For simulating the brain decision making, the final results of two separate paths are integrated by weighting sum operator. Nine ISO / ICAO requirements were used for testing the model. The simulation results, using AR and PUT databases, shows improvements in six requirements using the proposed method, in comparison with the FICV benchmark.
Read full abstract