The continuous use of chemical pesticides to control nematodes could result in the developing of pesticide-resistant nematodes. Novel nucleic acid pesticides are becoming the focus of pesticide research due to their strong specificity, high efficiency, and environmental friendliness. However, the limited known biochemical targets restrict the development of target pesticides for nematodes. The calcium stress experiments on pine wood nematodes (PWN) showed that 100 mmol/L Ca2+ resulted in longitudinal depression on the PWN body wall, reduced oviposition, and increased corrected mortality. To enrich the biological targets of nematode pesticides, we further investigated the response mechanism of PWN to calcium stress at the molecular level. Differentially expressed gene analysis showed that genes involved in the oxidative phosphorylation (OXPHOS) pathway were significantly enriched. RNA interference results of 6 key genes belonging to four mitochondrial complex I (BXNDUFA2), III (BXQCR8), IV (BXCOX17), V (BXV-ATPaseB, BXV-ATPaseE, BXV-ATPaseε) in non-stressed nematodes showed reduction in PWN oviposition, population size, feeding ability, and pathogenicity. The BXNDUFA2 gene interference had the highest inhibitory impact by decreasing the oviposition from 31.00 eggs to 6.75 eggs and PWN population size from 8.27 × 103 nematodes to 1.64 × 103 nematodes, respectively. Interestingly, RNA interference of these 6 key genes in calcium-stressed nematodes also led to increased mortality and decreased oviposition of PWN. In summary, calcium stress inhibited the reproductive capacity of PWN by down-regulating key genes BXNDUFA2, BXQCR8, BXV-ATPaseB, BXV-ATPaseE, BXV-ATPaseε, and BXCOX17, thereby reducing the pathogenicity. The current results enrich the RNAi targets in PWN and provide a scientific basis for developing novel nucleic nematicides.