BackgroundRadiation therapy (RT) for locally advanced head and neck cancer (HNC) often exposes subcortical brain structures to radiation. We performed this study to assess region-specific brain volumetrics in a population of long term HNC survivors. Methods and MaterialsForty HNC survivors were enrolled at a mean of 6.4 years from completion of RT. Patients underwent a research MRI protocol that included a 3D T1- weighted whole-brain scan on a 3 Tesla MRI scanner. Voxel based morphometry was performed using the Computational Anatomy Toolbox with the Neuromorphometrics atlas. Healthy controls from the Human Connectome Project were used as a comparison cohort. Study participants also completed a comprehensive neurocognitive assessment. ResultsThe final study cohort consisted of 38 participants after excluding 2 participants due to image quality. HNC survivors displayed widespread reduction in gray matter (GM) brain region volumes that included bilateral medial frontal cortex, temporal lobe, hippocampus, supplemental motor area, and cerebellum. Greater radiation exposure was associated with reduced GM volume in the left ventral diencephalon (r = -0.512, p = 0.003). Associations between cognition and regional GM volumes were identified for motor coordination and bilateral cerebellum (left, r = 0.444, p = 0.009; right, r = 0.372, p = 0.030), confrontation naming and left amygdala (r = 0.382, p = 0.026), verbal memory and bilateral thalamus (left, r = 0.435, p = 0.010; right, r = 0.424, p = 0.012), right amygdala (r = 0.339, p = 0.050), and right putamen (r = 0.364, p = 0.034). ConclusionsReductions in GM were observed within this cohort of primarily non-nasopharyngeal HNC survivors as compared to a control sample. GM volumes were associated with performance in multiple cognitive domains. Results of this exploratory study support the need for investigation of anatomic brain changes as an important translational corollary to cognitive problems among HNC survivors.