This paper investigated the impact of room temperature, cyclic ponding salt water (15%), hot water of 65°C, and rapid freeze and thaw cycles for three years on the flexural behavior of reinforced concrete beams strengthened with different configuration of CFRP composites. Totally sixteen RC beams were casted and tested as simply supported load as four point loading with a shear span to a depth ratio of 2.25. The investigated parameters includes mode of failure, ultimate load and corresponding deflection, yielding load and corresponding deflection, stiffness, steel strain, concrete strain, and CFRP strain. Based on tested results, the environment conditions had no effect (No separation or debonding) on the bond strength between CFRP composites and tension side of concrete. After applying the load, the inelastic deformation was shown in concrete which leads to yielding of main steel reinforcement and then compression failure of tested beams. In addition, the strengthened beams indicated a reduction in flexural stiffness and enhancement in the ductility of the member through. Finally, the increasing of number of layers (CFRP bonded area) had a strong impact on concrete by shelter concrete from environmental consequences and undesirable effect on the CFRP-concrete bond performance.
Read full abstract