Alkaline water (H2O) electrolysis is currently a commercialized green hydrogen (H2) production technology, yet the unsatisfactory hydrogen evolution reaction (HER) performance severely limits its energy conversion efficiency and cost reduction. Herein, PtRu2.9Fe0.15Co1.5Ni1.3 high entropy alloys (HEAs) is synthesized and subsequently exploited electrochemically induced structural oxidation processes to construct self-reconfigurable HEAs, as an efficient alkaline HER catalyst. The optimized self-reconstructed PtRu2.9Fe0.15Co1.5Ni1.3 HEAs with the HEAs and cobalt rutheniate interface (HEAs-Co2RuO4) exhibits excellent alkaline HER performance, requiring just 11.8mV to obtain a current density (j) of 10 mA cm-2 in 1m KOH. And the j on HEAs-Co2RuO4 is 41.8 mA cm-2 at 0.07 VRHE, 2.0 and 6.1 times higher than PtRu2.9Fe0.15Co1.5Ni1.3 HEAs and 20% Pt/C. Mechanism studies reveal that the improved alkaline HER performance of HEAs-Co2RuO4 is due to the formation of HEAs-Co2RuO4, which significantly shrinks the Helmholtz layer, provides a new fast material transport channel, boosts H2O adsorption, and reduces hydrogen adsorption, and thus accelerates the alkaline HER. This research not only throws new light on the self-reconstruction of catalysts but also provides guidance for the rational design of efficient electrocatalysts.
Read full abstract