Dental implant failures caused by bacterial infections are a significant concern for dental implantologists. We modified the titanium surface by depositing silver (Ti-Ag) using direct current (DC) sputtering and confirmed the formation of a 'nano coat' by X-ray photoelectron spectroscopy (XPS), surface profilometry and energy dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed the deposition of a uniform nano Ag thin film. A gradual increase in thickness was observed, and the film thickness (530 nm) at 5 min deposition time (Ti-Ag5) resulted in a reduction of the water contact angle (WCA, 15%) and an increase in surface energy (SFE, 22%) in comparison to the uncoated Ti surface. Using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), the slow, steady release of Ag from the coating was observed over 21 days. The Ti-Ag5 surface exhibited excellent antibacterial activity against Streptococcus oralis, Streptococcus sanguinis, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, which belonged to the yellow, purple, and red complexes, representing specific periodontal pathogens. Furthermore, we observed excellent cytocompatibility of Ag-deposited Ti towards MG-63 osteoblasts with no inhibitory effect on their proliferative potential. Quantitation of alkaline phosphatase (ALP) activity, mineralization efficiency, and osteogenesis-related gene expression of MG-63 cells over 21 days was suggestive of rapid osseointegration. Overall, the 'nano coat' of Ag on Ti is indeed a prophylactic against peri-implantitis, ensuring increased implant success.