Field experiments were conducted to study the effect of irrigation and nitrogen levels on radiation use efficiency (RUE), radiation extinction coefficient (κ) and temporal variation of leaf area index (LAI) and fraction intercepted photosynthetically active radiation (fIPAR). The LAI of wheat increased with increase in irrigation and nitrogen levels. The fIPAR also followed trend similar to LAI. The LAI and fIPAR showed logarithmic relationship with R2 value of 0.92 and 0.93 for the years 2013–2014 and 2014–2015, respectively. The κ value varied between 0.41 and 0.78 and was significantly affected by nitrogen levels but was not influenced by irrigation levels. The grain and above ground biomass (AGB) yields of wheat were not affected significantly by irrigation levels. However, application of 160 kg N ha−1 (N160) registered higher grain (12–33%) and AGB (22–25%) yeilds as compared to that with application of 40 kg N ha−1 (N40). Similar to AGB, the total intercepted photosynthetically active radiation (TIPAR) was not affected by irrigation levels but N160 treatment registered 9–20% higher TIPAR compared to N40 treatment. The linear relationship between TIPAR and AGB revealed that 83–86% variation in AGB yield of wheat can be explained by TIfIPAR. The RUE of wheat under three irrigations (I3) was 6 and 18% higher (P < 0.05) than the five (I5) and two (I2) irrigation treatments, respectively for the year 2013–2014. However, there was no significant effect of irrigation on RUE of wheat in the year 2014–2015. N160 treatment registered 5–13% higher RUE than the N40 treatment. Thus wheat may be grown with three irrigations (CRI, flowering and grain filling) and 160 kg N ha−1 for higher RUE without significant reduction in AGB of wheat compared to five irrigation levels in semi-arid location of Delhi region.
Read full abstract