Vegetable waste, including mixed cabbage residue (MCR), is considered a promising raw material for bioenergy production because of its high lignocellulosic component. In this study, the pretreatment of MCR by ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) was optimized based on response surface methodology. The optimal condition for MCR pretreatment was determined at 55.8°C, with a reaction of 2.65h and liquid-solid ratio of 4.60:1 v/w. Hydrolysis of pretreated MCR from optimal pretreatment conditions generated a maximum glucose yield of 156.65 ± 7.66mg/g MCR. Untreated and pretreated MCRs were successfully characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The pretreated MCR exhibited increased clear pores and incomplete structure. Moreover, compared with untreated biomass, decreased lignin, decreased hemicellulose, increased surface area, and cellulose crystallinity were observed. Thus, [Emim][OAc] pretreatment is a promising alternative approach for higher glucose production from MCR.