Small heat shock protein (sHSP) is involved in high temperature (HT) stress response. However, the function of sHSPs in regulating male fertility of soybean under HT stress remains largely unknown. Here, we identified a sHSP gene, GmHSP18.5a, which was responded to HT stress during flowering in cytoplasmic male sterility (CMS)-based restorer line of soybean. Moreover, GmHSFA6b turned out to directly activated the expression of GmHSP18.5a by binding to the heat shock cis-element in its promoter. Overexpression of GmHSP18.5a increased male fertility in transgenic Arabidopsis, soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. Reactive oxygen species (ROS) content detection revealed that GmHSP18.5a promoted the ROS scavenging ability of Arabidopsis inflorescence and soybean flower bud under HT stress. Enzyme activity assay and gene expression analysis indicated that GmHS18.5a mainly increased the activity of antioxidant enzymes and the expression level of ROS metabolism-related genes under HT stress. Our results indicated that GmHSP18.5a improved the male fertility restorability of CMS-based restorer line in soybean by regulating ROS metabolic pathway and reducing ROS accumulation. Our findings not only revealed the molecular mechanism of sHSP regulating the male fertility of soybean under HT stress, but also provided a theoretical basis for creating strong restorer line with thermotolerance.
Read full abstract