Wildfires and post-fire restoration methods significantly impact soil physicochemical properties and microbial characteristics in forest ecosystems. Understanding post-fire soil recovery and the impacts of various post-fire restoration methods is essential for developing effective restoration strategies. This study aimed to investigate how fire and soil depth influence soil physicochemical properties, enzymatic activities, and the structure of microbial communities, as well as how these factors change under different post-fire management practices. We sampled 0–10 cm (topsoil) and 10–20 cm (subsoil) in unburned plots, naturally restored plots, and two afforestation plots in southern China. The results showed that fire reduced topsoil soil moisture, nutrient levels, and microbial biomass. The variations in soil physicochemical properties significantly influenced microbial processes. Soil bulk density, nitrate, ammonium, carbon-to-nitrogen ratio, and availability of nitrogen, phosphorus, and potassium availability influenced soil enzyme activities. Soil pH, ammonium nitrogen, and the availability of nitrogen, phosphorus, and potassium were key factors shaping microbial composition. Fire altered the soil microbial communities by reducing the availability of nitrogen. Soil depth alleviated the impact of fire on the soil to some degree. Although artificial interventions reduced soil organic carbon, total nitrogen, and phosphorus, planting nitrogen-fixing species, such as Acacia mangium, promoted microbial recovery.
Read full abstract