Liver X receptor (LXR) agonists are atheroprotective but often induce hypertriglyceridaemia and liver steatosis. We investigated the effect of a novel high-affinity LXR activator, AZ876, on plasma lipids, inflammation and atherosclerosis, and compared the effects with another LXR agonist, GW3965. APOE*3Leiden mice were fed an atherogenic diet alone or supplemented with either AZ876 (5 or 20µmol·kg(-1) ·day(-1) ) or GW3965 (17µmol·kg(-1) ·day(-1) ) for 20 weeks. Total cholesterol and triglyceride levels were measured using commercial kits. Plasma cytokines were determined by using bead-based multiplex suspension array kits with the Luminex technology. Atherosclerosis was assessed histochemically and lesion composition was assessed by immunohistochemical methods. Low-dose AZ876 had no effect on plasma or liver lipids, whereas high-dose AZ876 increased plasma triglycerides (+110%) and reduced cholesterol (-16%) compared with controls. GW3965 increased plasma triglycerides (+70%). Low-dose AZ876 reduced lesion area (-47%); and high-dose AZ876 strongly decreased lesion area (-91%), lesion number (-59%) and severity. In either dose, AZ876 did not affect lesion composition. GW3965 reduced atherosclerosis and collagen content of lesions (-23%; P < 0.01). High-dose AZ876 and GW3965, but not low-dose AZ876, reduced inflammation as reflected by lower cytokine levels and vessel wall activation. We have identified a novel LXR agonist that when given in a low dose inhibits the progression of atherosclerosis without inducing anti-inflammatory effects, liver steatosis or hypertriglyceridaemia. Therefore, the primary protective action of a low-dose AZ876 is likely to be an increased reverse cholesterol transport.
Read full abstract