Lactoferrin is widely found in milk and has the ability to bind iron. Previous studies have reported that lactoferrin was effective in the prevention and treatment of acute alcohol-induced liver injury (AALI). Ferroptosis is a recently discovered cell death and is involved in the development of AALI. However, the potential role of lactoferrin in acute alcohol-induced ferroptosis is still unclear. In this study, we observed that lactoferrin (10, 20 and 40 μg/mL) significantly mitigated alcohol (300 mM)-induced injury in vitro. Additionally, lactoferrin (100 and 200 mg/kg bw) significantly alleviated alcohol (4.8 g/kg bw)-induced injury in vivo. Our results showed that lactoferrin inhibited alcohol-induced upregulation of the ferroptosis marker protein ACSL4 and downregulation of GPX4. Meanwhile, lactoferrin treatment successfully reversed the elevated Malondialdehyde (MDA) levels and the reduced Glutathione (GSH) levels caused by alcohol treatment. These results can indicate that lactoferrin significantly decreased ferroptosis in vivo and in vitro. Lactoferrin has the potential to chelate iron, and our results showed that lactoferrin (20 μg/mL) significantly reduced iron ions and the expression of Ferritin Heavy Chain (FTH) under FeCl3 (100 μM) treatment. It was demonstrated that lactoferrin had a significant iron-chelating effect and reduced iron overload caused by FeCl3 in AML12 cells. Next, we examined iron content and the expression of iron metabolism marker proteins Transferrin Receptor (TFR), Divalent metal transporter 1 (DMT1), FTH, and Ferroportin (FPN). Our results showed that lactoferrin alleviated iron overload induced by acute alcohol. The expression of TFR and DMT1 was downregulated and FPN and FTH were upregulated after lactoferrin treatment in vivo and in vitro. Above all, the study suggested that lactoferrin can alleviate AALI by mitigating acute alcohol-induced ferroptosis. Lactoferrin may offer new strategies for the prevention or treatment of AALI.