A procedure for rapid (7–10 days) obtaining of enrichment cultures of aboriginal thermoacidophilic microbial communities from ores with high antimony content (Sb 26%) was developed. This technique allows for rapid alkalization of the medium due to the abundance of calcites, as well as the low antioxidant status of the initial cells. The ore concentration in the medium was gradually increased to 10 g/l. In the course of this process, selection of enrichment cultures containing microbial strains preferentially oxidizing ore, S0, or Fe2+ is carried out. A combination of three enrichment cultures allowed us to rapidly (in six days) adapt the aboriginal strains to high-density pulp (16%) in the reactor at 46°C, as well as to carry out a three-stage semi-continuous cultivation in the reactors at D = 0.0042 h−1 and to isolate from each reactor the pure cultures of predominant bacteria involved in the process of bioleaching/oxidation of the mixture of antimonite-containing ores and sulfide flotation concentrates. It was demonstrated that, in the microbial community of reactor I, strain Sb-K exhibiting high rates of growth and initial substrate oxidation was predominant. In reactor II, strain Sb-F prevailed, showing a high substrate specificity with respect to Fe2+. A sulfur-oxidizing strain involved in active oxidation of reduced inorganic sulfur compounds (RISCs) was predominant in reactor III. Nevertheless, together, all three strains showed synergism and were able to oxidize S0, Fe2+, and sulfide minerals (including antimonite Sb2S3 in the presence of 0.02% yeast extract) in reactors. The strains differed from each other in their DNA restriction profiles, growth rates, and the rates of inorganic substrate oxidation under mixotrophic conditions. The phenotypic properties of all the studied isolates have a certain similarity to those of sulfobacilli.
Read full abstract