Hypertension is an essential regulator of cardiac injury and remodeling. However, the pathogenesis that contributes to cardiac hypertrophy remains to be fully explored. BRD4, as a bromodomain and extra-terminal (BET) family member, plays an important role in critical biological processes. In the study, our results showed that BRD4 expression was up-regulated in human and mouse hypertrophied hearts, and importantly these effects were modulated by reactive oxygen species (ROS) generation. In angiotensin II (Ang II)-treated cardiomyocytes, BRD4 decrease markedly blunted the prohypertrophic effect, which was further promoted by the combinational treatment of ROS scavenger (N-acetyl-cysteine, NAC). In addition, NAC pre-treatment markedly elevated the anti-fibrotic role of BRD4 suppression in Ang II-incubated cardiomyocytes by repressing transforming growth factor β1 (TGF-β1)/SMADs signaling pathway. NAC combined with BRD4 reduction further alleviated inflammation and oxidative stress in Ang II-exposed cardiomyocytes, which was partly through inhibiting nuclear factor-κB (NF-κB) signaling and improving nuclear erythroid factor 2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) pathway, respectively. Furthermore, the in vivo results confirmed the protective effects of BRD4 suppression on mice against aortic banding (AB)-induced cardiac hypertrophy, as evidenced by the reduced cross sectional area and fibrotic area using H&E and Masson trichrome staining. What’s more, the degree of cardiac hypertrophy (ANP and BNP), the expression of pro-fibrotic genes (TGF-β1, Collagen I, Collagen III and CTGF), the levels of inflammation and oxidative stress were all significantly attenuated by the blockage of BRD4 in AB-operated mice. Taken together, repressing BRD4 expression was found to confer a protective effect against experimental cardiac hypertrophy in mice, demonstrating its potential as an effective therapeutic target for pathological cardiac hypertrophy.