Camellia oil (CO) is a high medicinal and nutritional value edible oil. However, its ability to alleviate fat accumulation in high-fat Caenorhabditis elegans has not been well elucidated. Therefore, this study aimed to investigate the effect of CO on fat accumulation in high-fat C. elegans via transcriptome and metabolome analysis. The results showed that CO significantly reduced fat accumulation in high-fat C. elegans by 10.34% (Oil Red O method) and 11.54% (TG content method), respectively. Furthermore, CO primarily altered the transcription levels of genes involved in longevity regulating pathway. Specifically, CO decreased lipid storage in high-fat C. elegans by inhibiting fat synthesis. In addition, CO supplementation modulated the abundance of metabolic biomarkers related to pyrimidine metabolism and riboflavin metabolism. The integrated transcriptome and metabolome analyses indicated that CO supplementation could alleviate fat accumulation in high-fat C. elegans by regulating retinol metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, ascorbate and aldarate metabolism, and pentose and glucuronate interconversions. Overall, these findings highlight the potential health benefits of CO that could potentially be used as a functional edible oil.
Read full abstract