Atomic force measurements of unbinding rates (or off-rates) of ligands bound to a class of cell adhesion molecules from the selectin family show a transition from catch to slip bonds as the value of external force (f) is increased. At low forces (<10 pN), the unbinding rates decrease (catch regime), while, at high forces, the rates increase in accord with the Bell model (slip regime). The energy landscape underlying the catch-slip transition can be captured by a two-state model that considers the possibility of redistribution of population from the force-free bound state to the force-stabilized bound state. The excellent agreement between theory and experiments is used to extract the parameters characterizing the energy landscape of the complex by fitting the calculated curves to lifetime data (obtained at constant f) for the monomeric form of PSGL-1 (sPSGL-1). We used the constant force parameters to predict the distributions of unbinding times and unbinding forces as a function of the loading rate. The general two-state model, which also correctly predicts the absence of catch bonds in the binding of antibodies to selectins, is used to resolve the energy landscape parameters characterizing adhesive interactions of P- and L-selectins with physiological ligands such as sPSGL-1 and endoglycan and antibodies such as G1 and DREG56. Despite high sequence similarity, the underlying shapes of the energy landscape of P-selectin and L-selectin interacting with sPSGL-1 are markedly different. The underlying energy landscape of the selectin cell adhesion complex is sensitive to the nature of the ligand. The unified description of selectins bound to physiological ligands and antibodies in conjunction with experimental data can be used to extract the key parameters that describe the dynamics of cell adhesion complexes.