We present spectroscopic observations of red giant branch (RGB) stars over a large expanse in the halo of the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. Using a combination of five photometric/spectroscopic diagnostics?(1) radial velocity, (2) intermediate-width DDO51 photometry, (3) Na I equivalent width (surface gravity-sensitive), (4) position in the color-magnitude diagram, and (5) comparison between photometric and spectroscopic [Fe/H] estimates?we isolate over 250 bona fide M31 bulge and halo RGB stars located in 12 fields ranging from R = 12 to 165 kpc from the center of M31 (47 of these stars are halo members with R > 60 kpc). We derive the M31 spheroid (bulge and halo) metallicity distribution function and find it to be systematically more metal-poor with increasing radius, shifting from [Fe/H] = -0.47 ? 0.03 (? = 0.39) at R 60 kpc, assuming [?/Fe] = 0.0. These results indicate the presence of a metal-poor RGB population at large radial distances out to at least R = 160 kpc, thereby supporting our recent discovery of a stellar halo in M31 (structural component with an R-2 power-law surface brightness profile). This component has a distinct metallicity distribution from M31's bulge. If we assume an ?-enhancement of [?/Fe] = +0.3 for M31's halo, we derive [Fe/H] = -1.5 ? 0.1 (? = 0.7). Therefore, the mean metallicity and metallicity spread of this newly found remote M31 RGB population are similar to those of the Milky Way halo.
Read full abstract