This paper focuses on the determination of and improvement in the energy efficiency of plasma jets. To achieve this goal, an equivalent electrical model of a discharge reactor was developed, incorporating variable electrical parameters. The evolution of these parameters was determined by a mathematical identification method based on the recursive least squares algorithm (RLSA). The good agreement between the measured currents and those calculated using our electrical circuit, as well as the significant shapes of the estimated parameters, confirmed the accuracy of the parameter estimation method. This allowed us to use these parameters to determine the energy delivered to the reactor and that used during the discharge. This made our reactor controllable at the energy level. Thus, the ratio between these two energies allowed us to calculate the energy efficiency of plasma jets at each discharge instant. We also studied the effect of the applied voltage on efficiency. We found that efficiency was increased from 75% to 90% by increasing the voltage from 6 kV to 8 kV. All the results found in this work were interpreted and compared with the discharge behavior. This proposed model will help us to choose the right operating conditions to reach the maximum efficiency.
Read full abstract