Economic theory, game theory and mathematical statistics have all increasingly become algorithmic sciences. Computable Economics, Algorithmic Game Theory [Noam Nisan, Tim Roiughgarden, Éva Tardos, Vijay V. Vazirani (Eds.), Algorithmic Game Theory, Cambridge University Press, Cambridge, 2007] and Algorithmic Statistics [Péter Gács, John T. Tromp, Paul M.B. Vitányi, Algorithmic statistics, IEEE Transactions on Information Theory 47 (6) (2001) 2443–2463] are frontier research subjects. All of them, each in its own way, are underpinned by (classical) recursion theory – and its applied branches, say computational complexity theory or algorithmic information theory – and, occasionally, proof theory. These research paradigms have posed new mathematical and metamathematical questions and, inadvertently, undermined the traditional mathematical foundations of economic theory. A concise, but partial, pathway into these new frontiers is the subject matter of this paper. Interpreting the core of mathematical economic theory to be defined by General Equilibrium Theory and Game Theory, a general – but concise – analysis of the computable and decidable content of the implications of these two areas are discussed. Issues at the frontiers of macroeconomics, now dominated by Recursive Macroeconomic Theory (The qualification ‘recursive’ here has nothing to do with ‘recursion theory’. Instead, this is a reference to the mathematical formalizations of the rational economic agent’s intertemporal optimization problems, in terms of Markov Decision Processes, (Kalman) Filtering and Dynamic Programming, where a kind of ‘recursion’ is invoked in the solution methods. The metaphor of the rational economic agent as a ‘signal processor’ underpins the recursive macroeconomic paradigm.), are also tackled, albeit ultra briefly. The point of view adopted is that of classical recursion theory and varieties of constructive mathematics.
Read full abstract