Drug resistant TB is currently a global challenge causing high risk of death and expanding the disease. This study explores the prevalence of drug resistance in newly diagnosed and recurrent TB patients and identifies the association between NAT2 gene polymorphism distribution and acetylator phenotype of NAT2 gene and the two study groups. The study results show that the newly diagnosed TB had l lower male ratio and younger age in comparison to the recurrent TB. Newly diagnosed group was more sensitive to first line TB drugs. However, both groups had significant resistance ratio in relation to INH and SM. Finally, the allele and acetylator phenotype frequency of NAT2 showed the significant association with TB status. The study concludes that the newly diagnosed and recurrent TB patients expressed differently in their profiles concerning patient’s background, drug resistance and NAT2 allele distribution.
 Keywords
 Drug resistance, INH, NAT2 polymorphism, newly diagnosed TB, recurrent TB1.
 References
 [1] WHO, Global Tuberculossi report, https://www.who.int/tb/publications/global_report/en/, 2018 (accessed 16 April 2019).[2] Hoàng Thị Phượng, Nghiên cứu đặc điểm lâm sàng, cận lâm sàng, tính kháng thuốc của vi khuẩn ở bệnh nhân lao phổi mới kết hợp bệnh đái tháo đường, Luận văn tiến sĩ Y học, trường Đại học Y Hà Nội, 2009.[3] S. Guaoua, I. Ratbi, F.Z. Laarabi, S.A. Elalaoui, IC. Jaouad, A. Barkat, A. Sefiani, Distribution of allelic and genotypic frequencies of NAT2 and CYP2E1 variants in Moroccan population, BMC Genet. 15 (2014) 156.[4] A. Toure, M. Cabral, A. Niang, C. Diop, A. Garat, L. Humbert, M. Fall, A. Diouf, F. Broly, M. Lhermitte, D. Allorge, Prevention of isoniazid toxicity by NAT2 genotyping in Senegalese tuberculosis patients, Toxicol Rep. 3 (2016) 826-831.[5] M. Majumder, N. Sikdar, S. Ghosh, B. Roy, Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators, Int J Cancer. 120(10) (2007) 2148-2156.[6] S. Morita, M. Yano, T. Tsujinaka, Y. Akiyama, M. Taniguchi, K. Kaneko, H. Miki, T. Fujii, K. Yoshino, H. Kusuoka, M. Monden, Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to head-and-neck squamous-cell carcinoma, Int J Cancer. 80(5) (1999) 685-688.[7] Hoàng Hà, Nghiên cứu một số đặc điểm lâm sàng, cận lâm sàng, sinh học của vi khuẩn ở bệnh nhân lao phổi điều trị lại, Luận án tiến sỹ Y học, Trường Đại học Y Hà Nội, 2009.[8] S. Wattanapokayakit, T. Mushiroda, H. Yanai, N. Wichukchinda, C. Chuchottawon, S. Nedsuwan, A. Rojanawiwat, S. Denjanta, T. Kantima, J. Wongyai, W. Suwankesawong, W. Rungapiromnan, R. Kidkeukarun, W. Bamrungram, A. Chaiwong, S. Suvichapanich, S. Mahasirimongkol, K. Tokunaga, NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients, Int J Tuberc Lung Dis. 20(10) (2016) 1364-1369.[9] Đinh Ngọc Sỹ, Chiến lược quản lý bệnh lao đa kháng thuốc tại Việt Nam, Tạp chí khoa học Hội Phổi Pháp - Việt. 2(3) (2011) 40-42.[10] Nguyễn Thu Hà, Trần Văn Sáng, Đinh Ngọc Sỹ, Lâm sàng, cận lâm sàng và tính kháng thuốc của vi khuẩn lao ở bệnh nhân lao phổi tái phát, JFran Viet Pneu. 2(3) (2011) 63-67.[11] D. Tu, L. Zhang, J. Su, Resistance and efficacy of treatment in relapse pulmonary tuberculosis, Zhonghua Jie He He Hu Xi Za Zhi. 23 (11) (2000) 666-668
 
Read full abstract