AbstractRecent research works on potential of different protein surface describing parameters to predict protein surface properties gained significance for its possible implication in extracting clues on protein's functional site. In this direction, Surface Roughness Index, a surface topological parameter, showed its potential to predict SCOP-family of protein. The present work stands on the foundation of these works where a semi-empirical method for evaluation of Surface Roughness Index directly from its heat denatured protein aggregates (HDPA) was designed and demonstrated successfully. The steps followed consist, the extraction of a feature, Intensity Level Multifractal Dimension (ILMFD) from the microscopic images of HDPA, followed by the mapping of ILMFD into Surface Roughness Index (SRI) through recurrent backpropagation network (RBPN). Finally SRI for a particular protein was predicted by clustering of decisions obtained through feeding of multiple data into RBPN, to obtain general tendency of decision, as well as to discard the noisy dataset. The cluster centre of the largest cluster was found to be the best match for mapping of Surface Roughness Index of each protein in our study. The semi-empirical approach adopted in this paper, shows a way to evaluate protein's surface property without depending on its already evaluated structure.