ABSTRACT Accurate real-time traffic flow forecasting has been a challenge due to the complex spatial–temporal dependencies and uncertainties associated with the dynamic changes in traffic flow. To overcome this problem, a traffic flow forecasting model based on an Augmented Multi-Component Recurrent Graph Attention Network (AMR-GAT) is proposed in this paper to model the spatial–temporal correlations and periodic offset of traffic flows. This paper introduces an augmented multi-component module to address periodic temporal offset in traffic flow forecasting. It proposes an encoder-decoder architecture combining 1D convolution and LSTM via a Temporal Correlation Learner (TCL) to capture temporal characteristics, while a Graph Attention Network (GAT) handles spatial features. TCL and GAT are integrated to manage spatial-temporal correlations, and the decoder uses TCL and convolutional neural networks to generate high-dimensional representations based on spatial-temporal sequences. Experiments on two datasets demonstrate superior prediction performance of the proposed AMR-GAT model.
Read full abstract