Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy. M1-phenotype macrophages-derived sEVs, which carry cytokines that inhibit tumor progression, were separately encapsulated with calcium phosphates (CaPs) and Au@Pt nanoparticles (Au@Pt NPs), endowing them with pH and photothermal dual-responsiveness. Subsequently, they were assembled into sEV-Au@Pt NPs/CaPs nanohybrids, and functionalized with mitochondria-targeting peptides. Within tumor cells, mitochondrial targeting enhances Ca2+ accumulation, resulting in mitochondrial homeostasis imbalance. The release of Pt2+ causes nuclear damage and exacerbates mitochondrial dysfunction. Furthermore, under laser irradiation, the sEV-Au@Pt NPs absorb light, generating hyperthermia that promotes the release of Ca2+ and Pt2+ from the hydrogel and cytokines from the sEVs, thereby achieving a quadruple-efficient synergistic therapy. The hydrogel effectively prolongs the retention time of nanohybrids, aiding in the prevention of tumor recurrence. These nanohybrids exhibit favorable mitochondrial targeting ability, with a Pearson's co-localization coefficient of 0.877. In experimental trials, tumor growth was significantly inhibited after only five treatments, with the tumor volume reduced to 0.16-fold that of the control group. This strategy presents a potential tailored platform for engineered sEVs in mitochondrial-targeted therapy and holds great promise for advancing organelle-targeted therapeutic strategies. STATEMENT OF SIGNIFICANCE: Engineering small extracellular vesicles (sEVs) can significantly enhance the synergistic effects of organelle-targeted therapy, thereby improving therapeutic efficacy and reducing side effects. However, their full development is still pending. In this study, we present a promising strategy that involves engineering sEVs with pH and photothermal dual-responsiveness through biomineralization and metallization, enabling quadruple synergistic tumor therapy. Our study demonstrates the remarkable synergistic effects of mitochondrial homeostasis imbalance caused by Ca2+ bursts and nuclear damage due to Pt2+ release. After five treatments, the tumor volume in the experimental group was reduced to 0.16-fold that of the control group. This strategy holds great promise for the design of engineered sEVs as organelle-targeted therapeutic systems.
Read full abstract