Defect engineering is an extremely effective strategy for modifying metal-organic frameworks (MOFs), which can break through the application limitations of traditional MOFs and enhance their functionality. Herein, we report a highly robust nanoporous thulium(III)-organic framework, {[Tm2(BDCP)(H2O)5](NO3)·3DMF·2H2O}n (NUC-105), with [Tm(COO)2(H2O)]n chains and [Tm2(COO)4(H2O)8] dinuclears as metal nodes and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (BDCP) linkers. In NUC-105, each of the four chains of [Tm(COO)2]n and the two rows of [Tm2(COO)4(H2O)8] units is unified by the organic skeleton, resulting in a rectangular nanochannel with dimensions of 15.35 Å × 11.29 Å, which leads to a void volume of 50%. It is worth mentioning that the [Tm2(COO)4(H2O)8] cluster is very rare in terms of its higher level of associated water molecules, implying that the activated host framework can serve as a strong Lewis acid. NUC-105a exhibited great heterogeneous catalytic performance for CO2 cycloaddition with epoxides under the reaction conditions (0.60 mol % NUC-105a, 5.0 mol % n-Bu4NBr, 65 °C, 5 h), ensuring exclusive selectivity and high conversion rates. In addition, NUC-105a's strong catalytic impact on the Knoevenagel condensation of aldehydes and malononitrile can be attributed to the collaboration between the drastically unsaturated Lewis acidic Tm3+ centers and Lewis basic pyridine groups.
Read full abstract