Abstract

The poor heat transfer properties of the base fluid are the first effective obstacle to improving heat exchangers' efficiency. The key point of using very high conductivity of solid particles (in nanometer dimension) is hundreds of times more than common fluids in heat transfer in the composition of these fluids. Therefore, adding nanoparticles (NPs) to base fluids has been a solution to increase the heat transfer (HT) properties of common energy-carrying fluids. On the other hand, adding surfactants prevents the sedimentation and instability of NPs and improves the thermal performance of nanofluids (NF). So, this study surveyed the thermal properties of water-copper NF with/without surfactant molecules in a rectangular nanochannel using molecular dynamics (MD) simulation. Cetryltrimethylammoniu Bromide (CTAB) molecules were used as surfactants, copper structure as NPs, and water molecules as a base fluid in this simulation. In the present study, the effect of nanochannel wall temperature, copper nanoparticle (NP) size, and force field type (DREIDING, Universal Force-Field (UFF), and CHARM) on thermal conductivity (Knf) of water-copper NF were studied. The results show that as the wall temperature decreased from 80 to 30 K, Knf decreased from 0.783 to 0.753 Wm-1K−1. On the other hand, by increasing the radius of NPs from 0.5 to 2 nm, Knf and heat flux (HF) increase from 0.77 to 0.798 Wm-1K−1 and 5734 to 6352 W.m−2, respectively. One of the important purposes of researchers and engineers in various industries is to increase efficiency and reduce the systems' size. Therefore, it is expected that the results of this study will be effective in many different thermal industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call