In biomass thermal conversion processes such as pyrolysis and gasification, biomass often takes on a cylindrical shape. However, most previous studies have modeled biomass as spherical, leaving the fluidization and mixing behaviors of non-spherical biomass particles with approximately spherical bed materials insufficiently explored. To bridge this gap, a super-quadratic particle model coupled with CFD-DEM was used to explore the fluidization characteristics and mixing dynamics of non-spherical binary mixtures. The numerical model successfully validated the pressure drop and spatial distribution within the binary mixture. The results indicate that particle mixing is primarily driven by the rise and movement of bubbles. The large aspect ratio of the cylindrical particles, combined with the narrow thickness of the 2D rectangular fluidized bed, leads to a significant interlocking effect during fluidization. This interlocking hinders both fluidization and mixing, resulting in poor overall performance for non-spherical particles. At a low superficial velocity (Ug), only the cylindrical particles in the lower part are fluidized as a result of the rising central bubble. The two particle types achieve effective mixing as the Ug rises to a high value. The mixing index increases from 0.78 to 0.94 as the Ug increases from 1.8 to 2.1 m/s. However, the stacking pattern of cylindrical particles creates a dead zone at the bed bottom, occupied solely by spherical particles, which limits local bed mixing and fluidization. As the Ug increases from 1.8 to 2.1 m/s and the dimensionless inventory height increases from 0.6 to 1.0, the axial dispersion coefficient of the cylinders increases from 1.17×10−3 to 4.35×10−3 m2/s and from 1.91×10−3 to 9.22×10−3 m2/s, respectively. This study provides new insights into the behavior of non-spherical particles, offering potential avenues for optimizing chemical engineering processes.
Read full abstract