AbstractRare earth elements (REEs) and cobalt (Co) are listed as critical raw materials because of their importance in global industrial production growth, high supply risk, and economic significance. The recovery of Co and REEs from secondary resources is therefore proposed as a key countermeasure to address this concern. In this study, a straightforward process that integrates acid baking and water leaching is proposed for the recovery of samarium (Sm) and Co from scrap SmCo magnets. Firstly, the chemical composition of SmCo magnets is revealed by ICP-OES and XRF. The Taguchi experimental design technique is employed to optimize nitric acid baking and water leaching. Based on the thermal decomposition behavior of Co, Fe, and Sm, the acid baking temperature is studied for the conversion of metal nitrates, excluding REEs nitrates, into metal oxides. The optimal conditions for acid baking and water leaching are identified, and a reactor for the pilot-scale acid baking process is proposed. The optimum parameters are tested with the proposed reactor.