Enteric virus concentration in large-volume water samples is crucial for detection and essential for assessing water safety. Certain dissolution and suspension components can affect the enrichment process. In this study, tangential flow ultrafiltration (TFUF) was used as an enrichment method for recovering enteric virus in water samples. Interestingly, the bacteriophage MS2 recovery in reclaimed water and the reclaimed water without particles were higher than that in ultrapure water. The simulated reclaimed water experiments showed that humic acid (HA) (92.16% ± 4.32%) and tryptophan (Try) (81.50 ± 7.71%) enhanced MS2 recovery, while the presence of kaolin (Kaolin) inhibited MS2 recovery with an efficiency of 63.13% ± 11.17%. Furthermore, Atomic force microscopy (AFM) revealed that the MS2-HA cluster and the MS2-Try cluster had larger roughness values on the membrane surface, making it difficult to be eluted, whereas MS2-Kaolin cluster had compact surfaces making it difficult to be eluted. Additionally, the MS2-HA cluster is bound to the membrane by single hydrogen bond with SO, whereas both the MS2-Try cluster and the MS2-Kaolin cluster are bound to the membrane by two hydrogen bonds, making eluting MS2 challenging. These findings have potential implications for validating standardized methods for virus enrichment in water samples.
Read full abstract