This paper considers compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool, which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while yielding sharp results. It is shown that for any given constant <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$t\geq{4/3}$</tex></formula> , in compressed sensing, <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\delta_{tk}^{A}<\sqrt{(t-1)/t}$</tex></formula> guarantees the exact recovery of all <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex></formula> sparse signals in the noiseless case through the constrained <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\ell_{1}$</tex></formula> minimization, and similarly, in affine rank minimization, <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\delta_{tr}^{\cal M}<\sqrt{(t-1)/t}$</tex></formula> ensures the exact reconstruction of all matrices with rank at most <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$r$</tex></formula> in the noiseless case via the constrained nuclear norm minimization. In addition, for any <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\epsilon>0$</tex></formula> , <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\delta_{tk}^{A}<\sqrt{{t-1}\over{t}}+\epsilon$</tex></formula> is not sufficient to guarantee the exact recovery of all <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex></formula> -sparse signals for large <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$k$</tex></formula> . Similar results also hold for matrix recovery. In addition, the conditions <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\delta_{tk}^{A}<\sqrt{(t-1)/t}$</tex></formula> and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\delta_{tr}^{\cal M}<\sqrt{(t-1)/t}$</tex></formula> are also shown to be sufficient, respectively, for stable recovery of approximately sparse signals and low-rank matrices in the noisy case.
Read full abstract