Fire is inextricably linked to the vegetation that provides the fuel load. For palaeofire records to contribute meaningfully to the reconstruction of past landscape fire history, it is helpful to identify the vegetation that has been burnt, for example, grassy versus woody vegetation in tropical savannas. The morphological characteristics of charcoal particles can provide useful information on source vegetation type, and the aspect ratio of charcoal particles has been proposed to identify the contribution of grasses to environmental records. Stable carbon isotope analysis of pyrogenic carbon can also chemically identify the proportion of C3 and C4 biomass in charcoal samples but has yet to be widely applied alongside charcoal morphological analysis. Using carbon isotope analysis we demonstrate that C3 sedges contribute elongate charcoal to a fire record where C4 grasses are absent. These results challenge the widespread assumption that elongate charcoal is primarily or exclusively derived from grass, as most experimental studies demonstrating this relationship were conducted in environments where graminoids (grass-like forms) did not significantly contribute to available fuels. In turn, this complicates the simple interpretation of elongate aspect ratios for charcoal in fire records as direct proxies for the proportion of grasses in an environment, beyond differentiating temperate forests from grasslands. Minimal work to date has been done on separating charcoal derived from different graminoid types and future studies would benefit from the ability to differentiate graminoids including Poaceae and Cyperaceae in fire records. These results highlight the benefits of a multi-proxy approach to the interpretation of fire records in tropical savannas.