Specialization is a widespread but highly ambiguous and context-dependent ecological concept. This quality makes comparisons across related studies difficult and makes associated terms such as "specialist" and "generalist" scientifically obscure. Here, we present a metric-based framework to quantify specialization in 141 Quercus species using functional traits, biogeography, and species interactions. Rankings of specialization based on five metrics were used to answer questions about how specialization is used colloquially (i.e., individual species assessment by experts) and influenced by phylogenetics (Ancestral Character State Reconstruction, Automatic Shift Detection), biogeography (patterns of clustering by region and with climate), and species threat level (IUCN Red List). Metric-based ranking can be representative of specialization in a consistent and practical manner, correlating with IUCN Red List data, and the mean scores of individual expert assessments. Specialization is shown to be highly correlated with precipitation seasonality and only moderately influenced by evolutionary history. Data-deficient species were more likely to be highly specialized, and higher specialization was positively correlated with greater IUCN threat level. Frameworks for characterizing specialization and generalization can be done using metric ranking and can turn concepts that are often unclear into a definitive system. Metric-based rankings of specialization can also be used to reveal interesting insights about a clade's evolutionary history and geographic distribution when paired with the related phylogenetic and geographic data. Metric-based rankings can be applied to other systems and be a valuable tool for identifying species at risk and in need of conservation.
Read full abstract