Biomolecular devices based on photo-responsive proteins have been widely proposed for medical, electrical, and energy storage and production applications. Also, bacteriorhodopsin (bR) has been extensively applied in such prospective devices as a robust photo addressable proton pump. As it is a membrane protein, in principle, it should function most efficiently when reconstituted into a fully fluid lipid bilayer, but in many model membranes, lateral fluidity of the membrane and protein is sacrificed for electrochemical addressability because of the need for an electroactive surface. Here, we reported a biomolecular photoactive device based on light-activated proton pump, bR, reconstituted into highly fluidic microcavity-supported lipid bilayers (MSLBs) on functionalized gold and polydimethylsiloxane cavity array substrates. The integrity of reconstituted bR at the MSLBs along with the lipid bilayer formation was evaluated by fluorescence lifetime correlation spectroscopy, yielding a protein lateral diffusion coefficient that was dependent on the bR concentration and consistent with the Saffman–Delbrück model. The photoelectrical properties of bR-MSLBs were evaluated from the photocurrent signal generated by bR under continuous and transient light illumination. The optimal conditions for a self-sustaining photoelectrical switch were determined in terms of protein concentration, pH, and light switch frequency of activation. Overall, a significant increase in the transient current was observed for lipid bilayers containing approximately 0.3 mol % bR with a measured photo-current of 250 nA/cm2. These results demonstrate that the platforms provide an appropriate lipid environment to support the proton pump, enabling its efficient operation. The bR-reconstituted MSLB model serves both as a platform to study the protein in a highly addressable biomimetic environment and as a demonstration of reconstitution of seven-helix receptors into MSLBs, opening the prospect of reconstitution of related membrane proteins including G-protein-coupled receptors on these versatile biomimetic substrates.