We aimed to investigate the role of forkhead box O1 (FoxO1) inhibitor AS1842856 (AS) in nonalcoholic steatohepatitis (NASH) mice and the potential mechanisms. Mice were given methionine-choline-sufficient (MCS), or methionine- and choline-deficient (MCD) diet for 5 weeks, along with AS (60 mg/kg) or vehicle gavage treatment (0.2 mL/day). Body and liver weight, serum triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting glucose and insulin levels were measured. Liver macrophage infiltration and ileal ZO-1 protein expression were also detected. Interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, sterol regulatory element binding protein (SREBP)-1c, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), α-smooth muscle actin (SMA), recombinant collagen type III α1 (Col3a1), and connective tissue growth factor (Ctgf) expressions were measured. Stool samples were collected for 16S rDNA sequencing. Compared to the MCD group, AS attenuated liver weight, reduced serum TG, ALT, and AST levels, increased HDL-C levels, mitigated hepatic steatosis, decreased macrophage infiltration, and augmented ileal ZO-1 proteins in NASH mice. It also reduced the levels of IL-6, IL-1β, and TNF-α, alongside with the Srebp-1c mRNA expression. However, no significant effects on Pepck, G6Pase, α-SMA, Col3a1, or Ctgf were observed. Furthermore, AS promoted diversity and altered gut microbiota composition in NASH mice, causing increased beneficial bacteria like Akkermansia muciniphila, Parabacteroides distasonis, and Prevotellamassilia, which were associated with metabolic functions. FoxO1 inhibitor AS ameliorated hepatic steatosis, inflammation, and intestinal dysbiosis in NASH mice, making it a potentially promising treatment for NASH.