The Lyme disease (LD) vaccine formerly approved for use in the United States consisted of recombinant outer surface protein A (OspA) from Borrelia burgdorferi sensu stricto (ss), the bacterial genospecies responsible for the vast majority of LD in North America. OspA is an ∼30 kDa lipoprotein made up of 21 antiparallel β-strands and a C-terminal α-helix. In clinical trials, protection against LD following vaccination correlated with serum antibody titers against a single epitope near the C-terminus of OspA, as defined by the mouse monoclonal antibody (MAb), LA-2. However, the breadth of the human antibody response to OspA following vaccination remains undefined even as next-generation multivalent OspA-based vaccines are under development. In this report, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes recognized by a unique panel of OspA human MAbs, including four shown to passively protect mice against experimental B. burgdorferi infection and one isolated from a patient with antibiotic refractory Lyme arthritis. The epitopes grouped into three spatially distinct bins that, together, encompass more than half the surface-exposed area of OspA. The bins corresponded to OspA β-strands 8-10 (bin 1), 11-13 (bin 2), and 16-20 plus the C-terminal α-helix (bin 3). Bin 3 was further divided into sub-bins relative to LA-2's epitope. MAbs with complement-dependent borreliacidal activity, as well as B. burgdorferi transmission-blocking activity in the mouse model were found within each bin. Therefore, the resulting B cell epitope map encompasses functionally important targets on OspA that likely contribute to immunity to B. burgdorferi.
Read full abstract