Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance. In this study, two barley materials with different drought tolerance were subjected to soil drought treatment, including a variety with strong drought tolerance (Hindmarsh) and a genotype with weaker drought tolerance (XZ5). Transcriptomic sequencing data from the aboveground parts of these plants led to the identification of 1,206 differentially expressed genes associated with drought tolerance. These genes were upregulated in Hindmarsh following drought stress exposure but downregulated or unchanged in XZ5 under these same conditions, or were unchanged in Hindmarsh but downregulated in XZ5. Pathway enrichment analyses suggested that these genes are most closely associated with defense responses, signal recognition, photosynthesis, and the biosynthesis of various secondary metabolites. Using protein-protein interaction networks, the ankyrin repeat domain-containing protein 17-like isoform X2 was predicted to impact other drought tolerance-related protein targets in Hindmarsh. In MapMan metabolic pathway analyses, genes found to be associated with the maintenance of drought tolerance in Hindmarsh under adverse conditions were predicted to include genes involved in the abscisic acid, cytokinin, and gibberellin phytohormone signaling pathways, genes associated with redox homeostasis related to ascorbate and glutathione S-transferase, transporters including ABC and AAAP, transcription factors such as AP2/ERF and bHLH, the heat shock proteins HSP60 and HSP70, and the sucrose non-fermenting-1-related protein kinase. Heterologous HvSnRK2 (one of the identified genes, which encodes the sucrose non-fermenting-1-related protein kinase) gene expression in yeast conferred significant drought tolerance, highlighting the functional importance of this gene as one linked with drought tolerance. This study revealed the drought tolerance mechanism of Hindmarsh by comparing transcriptomes while also providing a set of candidate genes for genetic efforts to improve drought tolerance in this and other crop species.
Read full abstract