The objective of the study was to enhance quality education in the traditional pre-school piano education. Deep Learning (DL) technology is applied to piano education of children to improve their interest in learning music. Firstly, the problems of the traditional piano education of children were analyzed with the teaching patterns discussed under educational psychology, and a targeted music education plan was established. Secondly, musical instrument recognition technology was introduced, and the musical instrument recognition model was implemented based on DL. Thirdly, the proposed model was applied to the piano education of children to guide the music learning of students and improve their interest in piano learning. The feature recognition and acquisition of the proposed model were improved. Finally, the different teaching patterns were comparatively analyzed through the Questionnaire Survey (QS). The experimental results showed that the instrument recognition accuracy of Hybrid Neural Network (HNN) is 97.2%, and with the increase of iterations, the recognition error rate of the model decreases and stabilizes. Therefore, the proposed HNN based on DL for musical instrument recognition can accurately identify musical features. The QS results showed that the introduction of musical instrument recognition technology in the piano education of children can improve their interest in piano learning. Therefore, the establishment of the piano education patterns based on the piano education model can improve the effectiveness of teaching piano to students. This research provides a reference for the intelligentization of children's piano education.