The application of ammonia (NH3) as a possible future fuel presents a plausible solution for green energy storage. It helps provide a carbon-neutral fuel alternative for industrial power generation and transportation. However, the combustion of NH3 presents a formidable challenge due to its low reactivity, inadequate flame stability, sluggish flame propagation, and high NOx emissions. Consequently, its integration into combustion systems necessitates substantial system and strategy modification to enable its deployment to industrial systems. The current study presents a novel fuel/air injection technique, which emphasizes the high recirculation of hot combustion products and the extended residence time of fuel/air mixtures. A comprehensive experimental and numerical investigation is conducted using a swirl air injection and offset fuel injection to achieve the flameless combustion mode for optimized NH3/H2 fuel blends. A range of mixture conditions (ϕ = 0.5–1.2) and NH3/H2 compositions (50/50–70/30) are experimentally examined. The investigations helped elucidate the effect of residence time and recirculation on NOx emissions through kinetic simulations using a reactor network model. Subsequently, 3-D numerical simulations helped identify regions of high recirculation, quantified through reactant dilution ratios and uniform temperature distribution. These aspects are determined using a new parameter, the temperature uniformity index along the axial direction of the combustor. The emissions of NOx, unburnt NH3, and unburnt H2 are quantified for different equivalence ratios and NH3 mole fractions in the fuel mixture. The investigations reveal that NOx emissions reached their minimum (450–654 ppm) and (344-211 ppm), when the burner operated at lean (ϕ = 0.5–0.8) and rich (ϕ = 1.0–1.2) conditions, respectively, for 70/30 NH3/H2 blend. The emissions of unburnt NH3 and H2 species remain minimal for lean conditions. Both lean and rich operational regimes demonstrated similar or superior emission characteristics in flameless combustion mode when compared to the conventional combustion mode.