Abstract

This study investigated the effects of exhaust gas recirculation (EGR) on emission and efficiency in a hydrogen direct injection spark ignition engine. EGR was supplied as the low-pressure (LP)-EGR system by controlling EGR valve from zero to 18.7% in terms of mass fraction. The result showed that EGR effect on nitrogen oxides (NOx) reduction became enlarged as higher engine speed due to increasing residual gas fraction. Also, under the same excessive air ratio (λ:2.2), EGR addition made NOx reduction from 89.9 to 98.7 % as varying engine speed. As NOx limit was low, the maximum brake torque was also reduced. However, by using appropriate EGR, NOx margin could be converted to increasing brake torque under the same NOx concentration level from 1.9% to 18.2% as varying engine speeds. From this result, to achieve the maximum output when reaching the turbocharger’s limit in a hydrogen engine and effectively reduce nitrogen oxide emissions, it is not only dependent on lean combustion but also effective to incorporate approximately 20% EGR into the operating strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call