Thromboembolic events are common in patients with essential thrombocythemia (ET). However, the pathophysiological mechanisms underlying the increased thrombotic risk remain to be determined. Here, we perform the first phenotypical characterization of platelet expression using single-cell mass cytometry in six ET patients and six age- and sex-matched healthy individuals. A large panel of 18 transmembrane regulators of platelet function and activation were analyzed, at baseline and after ex-vivo stimulation with thrombin receptor-activating peptide (TRAP). We detected a significant overexpression of the activation marker CD62P (p-Selectin) (p = .049) and the collagen receptor GPVI (p = .044) in non-stimulated ET platelets. In contrast, ET platelets had a lower expression of the integrin subunits of the fibrinogen receptor GPIIb/IIIa CD41 (p = .036) and CD61 (p = .044) and of the von Willebrand factor receptor CD42b (p = .044). Using the FlowSOM algorithm, we identified 2 subclusters of ET platelets with a prothrombotic expression profile, one of them (cluster 3) significantly overrepresented in ET (22.13% of the total platelets in ET, 2.94% in controls, p = .035). Platelet counts were significantly increased in ET compared to controls (p = .0123). In ET, MPV inversely correlated with platelet count (r=-0.96). These data highlight the prothrombotic phenotype of ET and postulate GPVI as a potential target to prevent thrombosis in these patients.
Read full abstract