Increasing evidences have implicated that sigma-2 receptor is a biomarker and significantly over-expressed in many proliferative cancer cells with no or low expression in normal cells. Sigma-2 receptor selective ligands have been successfully used as valuable tools to study its pharmacological functions, tumor imaging, and cancer therapeutics or adjuvants. 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinolinylalkyl benzamides are among a few categories of structures that have demonstrated high affinities and selectivities for sigma-2 receptor and been used extensively as study tools in various tumor imaging and therapy. As a continuous effort, we have synthesized a new series of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives and evaluated their affinities for both sigma-1 and sigma-2 receptors. Most of these newly developed analogs showed good to excellent binding affinities for sigma-2 receptor with no or low affinities for sigma-1 receptor. In particular, compounds 3b, 3e, 4b, and 4e demonstrated Ki values of 5–6 nM affinities and excellent selectivities for sigma-2 receptor. In addition, these analogs also demonstrated moderate anticancer activities against human liver Huh-7 tumor cells and human esophagus KYSE-140 cancer cells. But their cytotoxicities seem not to be correlated with their sigma-2 receptor affinities.