The imaging of somatostatin receptors (SSTRs) plays a significant role in imaging neuroendocrine tumors (NETs). However, there has been no clear definition on whether it is necessary to withdraw somatostatin analogs (SSAs) before SSTRs imaging. We aimed to assess whether nonradioactive SSAs affect the uptake of radiolabeled SSAs on imaging for NETs patients. The databases of PubMed, Embase, and Web of Science (WoS) were searched until March 12, 2022 to identify eligible studies. Maximum standardized uptake values (SUVmax) in tumor and normal tissues were extracted, pooled, and compared before and after SSAs treatment. The change of tumor-to-background/liver ratio was also described. The quality of each study was assessed using the revised Quality Assessment of Diagnostic Accuracy Studies-2 tool. A total of 9 articles involving 285 patients were included and 5 studies using Gallium-68-labeled [1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid]-D-Phe1-Tyr3-Thr8-octreotide (68Ga-DOTATATE) were used for pooled evaluation. We found a significantly decreased SUVmax in the liver (9.56±2.47 vs. 7.62±2.12, P=0.001) and spleen (25.74±7.14 vs. 20.39±6.07, P=0.006) after SSAs treatment whereas no significant differences were observed in the uptake of thyroid, adrenal, and pituitary gland. For either primary tumor sites or metastases, the SUVmax did not change significantly before and after SSAs treatment. The tumor-to-liver/background ratio increased following SSAs therapy. High heterogeneity was observed across the studies, mainly due to inherent diversity of study design, sample size, and scanning technique. Based on current evidence, long-acting SSAs therapy before imaging has no effect on the uptake of radiolabeled SSAs at tumor primary sites and metastatic lesions, but results in a significant reduction of uptake in the liver and spleen. These findings may implicate the unnecessary discontinuation of SSAs before radiolabeled SSAs imaging.
Read full abstract