BackgroundSepsis is a frequent complication in critically ill patients, is highly heterogeneous and is associated with high morbidity and mortality rates, especially in the elderly population. Utilizing RNA sequencing (RNA-Seq) to analyze biological pathways is widely used in clinical and molecular genetic studies, but studies in elderly patients with sepsis are still lacking. Hence, we investigated the mortality-relevant biological features and transcriptomic features in elderly patients who were admitted to the intensive care unit (ICU) for sepsis.MethodsWe enrolled 37 elderly patients with sepsis from the ICU at Taichung Veterans General Hospital. On day-1 and day-8, clinical and laboratory data, as well as blood samples, were collected for RNA-Seq analysis. We identified the dynamic transcriptome and enriched pathways of differentially expressed genes between day-8 and day-1 through DVID enrichment analysis and Gene Set Enrichment Analysis. Then, the diversity of the T cell repertoire was analyzed with MiXCR.ResultsOverall, 37 patients had sepsis, and responders and non-responders were grouped through principal component analysis. Significantly higher SOFA scores at day-7, longer ventilator days, ICU lengths of stay and hospital mortality were found in the non-responder group, than in the responder group. On day-8 in elderly ICU patients with sepsis, genes related to innate immunity and inflammation, such as ZDHCC19, ALOX15, FCER1A, HDC, PRSS33, and PCSK9, were upregulated. The differentially expressed genes (DEGs) were enriched in the regulation of transcription, adaptive immune response, immunoglobulin production, negative regulation of transcription, and immune response. Moreover, there was a higher diversity of T-cell receptors on day-8 in the responder group, than on day-1, indicating that they had better regulated recovery from sepsis compared with the non-response patients.ConclusionSepsis mortality and incidence were both high in elderly individuals. We identified mortality-relevant biological features and transcriptomic features with functional pathway and MiXCR analyses based on RNA-Seq data; and found that the responder group had upregulated innate immunity and increased T cell diversity; compared with the non-responder group. RNA-Seq may be able to offer additional complementary information for the accurate and early prediction of treatment outcome.
Read full abstract