DNA of yeast artificial chromosomes (YACs) was prepared for microinjection by separation from most of the natural yeast chromosomes on a pulsed-field gel, treatment with agarase, and centrifugation. A salt concentration of 100 mM NaCl was necessary to protect the DNA from shear during these procedures. Injection of a 590-kb YAC, yGART2, into Chinese hamster ovary cells gave rise to cells expressing the 40-kb human GART gene carried on the YAC. Nine of 12 cell lines analyzed contained an intact stretch of at least 110 kb of YAC DNA surrounding the GART gene, and one cell line contained at least 480 kb, but not the entire 590 kb, intact. Mouse L A-9 cells were similarly injected with DNA of a 230-kb YAC containing the human beta-globin gene cluster and a mammalian selectable marker. Seven of 10 of the resulting cell lines contained both YAC vector arms plus the intact 140-kb SfiI fragment spanning the beta-globin gene. Three cell lines were analyzed by RecA-assisted restriction endonuclease (RARE) cleavage and found to contain the entire intact 210-kb YAC insert. Introduction of similarly prepared DNA into mammalian cells by lipofection gave rise to cell lines with multiple YAC fragments that were generally shorter than the YAC fragments found in microinjected cell lines. The results show that microinjection of gel-purified YAC DNA into mammalian cells is an efficient method of transferring DNA fragments several hundred kilobase pairs in size into mammalian cells.
Read full abstract