The optimum configuration parameters of tractor–trailer combinations for lateral stability performance are proposed by adjusting the length of dolly and the second trailer’s center of gravity. A linear yaw plane model of vehicle combinations is adopted for dynamic analysis, and the model is calibrated by TruckSim. According to the yaw rate rearward amplification ratio of lateral response index, and combining the simulation results of MATLAB/Simulink, dolly and the second trailer are the dominate factors for lateral stability of vehicle combinations. Simulation results show that the distance between articulation joints of dolly is 1.6 m; simultaneously, the rate of distance between front hitch and center of gravity of the second trailer to its front and rear wheelbase is 0.41 and may gain the best lateral performance. Compared with configuration parameters of the original vehicle combinations, the results also illustrate that the one derived from adjustment approach reduces high-speed rearward amplification ratio by 11.4%. The proposed approach might be used for identifying desired design variables of the tractor–two trailer combinations and provided theoretical basis for stability tests.
Read full abstract