The wind farm layout optimization problem (WFLOP) aims to maximize wind energy utilization efficiency and mitigate energy losses caused by wake effects by optimizing the spatial layout of wind turbines. Although Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been widely used in WFLOP due to their discrete optimization characteristics, they still have limitations in global exploration capability and optimization depth. Meanwhile, the Differential Evolution algorithm (DE), known for its strong global optimization ability and excellent performance in handling complex nonlinear problems, is well recognized in continuous optimization issues. However, since DE was originally designed for continuous optimization scenarios, it shows insufficient adaptability under the discrete nature of WFLOP, limiting its potential advantages. In this paper, we propose a Fractional-Order Difference-driven DE Optimization Algorithm called FODE. By introducing the memory and non-local properties of fractional-order differences, FODE effectively overcomes the adaptability issues of advanced DE variants in WFLOP’s discreteness while organically applying their global optimization capabilities for complex nonlinear problems to WFLOP to achieve more efficient overall optimization performance. Experimental results show that under 10 complex wind farm conditions, FODE significantly outperforms various current state-of-the-art WFLOP algorithms including GA, PSO, and DE variants in terms of optimization performance, robustness, and applicability. Incorporating more realistic wind speed distribution and wind condition data into modeling and experiments, further enhancing the realism of WFLOP studies presented here, provides a new technical pathway for optimizing wind farm layouts.
Read full abstract