Visible light communication (VLC) is one of the candidate technologies for the sixth generation (6G) networks. The path loss model is particularly important for link budget estimation and network planning in VLC. Due to the wideband nature and the extremely poor diffraction capacity of light, the path loss of the VLC channel is susceptible to wavelength dependence and blockage effect. In this paper, we propose a novel path loss model which can characterize the impact of wavelength dependence combined with mobile human blockage for both the single-LED (light emitting diode) and the multi-LED scenario. When there is no blockage in the channel, the multi-wavelength path loss under free space propagation is modeled with a small standard deviation of 0.262 in the single-LED scenario and a small root mean square error of 0.009 in the multi-LED scenario which indicates the high accuracy of the model. When considering the mobile human blockage, the blockage probability (BP) is modeled with full consideration of realistic human mobility and human body shadowing. The results indicate that the BP in single-LED scenario can reach 0.08, while the BP in multi-LED scenario is 0.022. This demonstrates that the distributed deployment of transmitters can effectively reduce the occurrence of the blockage state in VLC.
Read full abstract