Abstract

The COVID-19 pandemic has created an urgent need for mathematical models that can project epidemic trends and evaluate the effectiveness of mitigation strategies. A major challenge in forecasting the transmission of COVID-19 is the accurate assessment of the multiscale human mobility and how it impacts infection through close contacts. By combining the stochastic agent-based modeling strategy and hierarchical structures of spatial containers corresponding to the notion of geographical places, this study proposes a novel model, Mob-Cov, to study the impact of human traveling behavior and individual health conditions on the disease outbreak and the probability of zero-COVID in the population. Specifically, individuals perform power law-type local movements within a container and global transport between different-level containers. It is revealed that frequent long-distance movements inside a small-level container (e.g., a road or a county) and a small population size reduce both the local crowdedness and disease transmission. It takes only half of the time to induce global disease outbreaks when the population increases from 150 to 500 (normalized unit). When the exponent of the long-tail distribution of distance k moved in the same-level container, , increases, the outbreak time decreases rapidly from 75 to 25 (normalized unit). In contrast, travel between large-level containers (e.g., cities and nations) facilitates global spread of the disease and outbreak. When the mean traveling distance across containers increases from 0.5 to 1 (normalized unit), the outbreak occurs almost twice as fast. Moreover, dynamic infection and recovery in the population are able to drive the bifurcation of the system to a "zero-COVID" state or to a "live with COVID" state, depending on the mobility patterns, population number and health conditions. Reducing population size and restricting global travel help achieve zero-COVID-19. Specifically, when is smaller than 0.2, the ratio of people with low levels of mobility is larger than 80% and the population size is smaller than 400, zero-COVID can be achieved within fewer than 1000 time steps. In summary, the Mob-Cov model considers more realistic human mobility at a wide range of spatial scales, and has been designed with equal emphasis on performance, low simulation cost, accuracy, ease of use and flexibility. It is a useful tool for researchers and politicians to apply when investigating pandemic dynamics and when planning actions against disease. The online version contains supplementary material available at 10.1007/s11071-023-08489-5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.