We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivityto the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli. Furthermore, while discrimination sensitivity to the CoM location was not affected by stimulus duration for unreal optic flow stimuli, it showed a significant improvement when stimulus duration increased from 100 to 400 ms for real optic flow stimuli. These findings provide compelling evidence that the visual system employs distinct processing approaches for real versus unreal optic flow even when they are perfectly matched for two-dimensional global features and local motion signals. These differences reveal influences of self-movement in natural environments, enabling the visual system to uniquely process stimuli with significant survival implications.
Read full abstract