The characteristics of chicken droppings are closely linked to their health status. In prior studies, chicken droppings recognition is treated as an object detection task, leading to challenges in labeling and missed detection due to the diverse shapes, overlapping boundaries, and dense distribution of chicken droppings. Additionally, the use of intelligent monitoring equipment equipped with edge devices in farms can significantly reduce manual labor. However, the limited computational power of edge devices presents challenges in deploying real-time segmentation algorithms for field applications. Therefore, this study redefines the task as a segmentation task, with the main objective being the development of a lightweight segmentation model for the automated monitoring of abnormal chicken droppings. A total of 60 Arbor Acres broilers were housed in 5 specific pathogen-free cages for over 3 weeks, and 1650 RGB images of chicken droppings were randomly divided into training and testing sets in an 8:2 ratio to develop and test the model. Firstly, by incorporating the attention mechanism, multi-loss function and auxiliary segmentation head, the segmentation accuracy of the DDRNet was enhanced. Then, by employing the group convolution and an advanced knowledge distillation algorithm, a lightweight segmentation model named DDRNet-s-KD was obtained, which achieved a mean Dice coefficient (mDice) of 79.43% and an inference speed of 86.10 frames per second (FPS), showing a 2.91% and 61.2% increase in mDice and FPS compared to the benchmark model. Furthermore, the DDRNet-s-KD model was quantized from 32-bit floating-point values to 8-bit integers and then converted to TensorRT format. Impressively, the weight size of the quantized model was only 13.7 MB, representing an 82.96% reduction compared to the benchmark model. This makes it well-suited for deployment on the edge device, achieving an inference speed of 137.51 FPS on Jetson Xavier NX. In conclusion, the methods proposed in this study show significant potential in monitoring abnormal chicken droppings and can provide an effective reference for the implementation of other agricultural embedded systems.
Read full abstract