Abstract

The segmentation of the fetal head (FH) and pubic symphysis (PS) from intrapartum ultrasound images plays a pivotal role in monitoring labor progression and informing crucial clinical decisions. Achieving real-time segmentation with high accuracy on systems with limited hardware capabilities presents significant challenges. To address these challenges, we propose the real-time segmentation network (RTSeg-Net), a groundbreaking lightweight deep learning model that incorporates innovative distribution shifting convolutional blocks, tokenized multilayer perceptron blocks, and efficient feature fusion blocks. Designed for optimal computational efficiency, RTSeg-Net minimizes resource demand while significantly enhancing segmentation performance. Our comprehensive evaluation on two distinct intrapartum ultrasound image datasets reveals that RTSeg-Net achieves segmentation accuracy on par with more complex state-of-the-art networks, utilizing merely 1.86 M parameters—just 6 % of their hyperparameters—and operating seven times faster, achieving a remarkable rate of 31.13 frames per second on a Jetson Nano, a device known for its limited computing capacity. These achievements underscore RTSeg-Net's potential to provide accurate, real-time segmentation on low-power devices, broadening the scope for its application across various stages of labor. By facilitating real-time, accurate ultrasound image analysis on portable, low-cost devices, RTSeg-Net promises to revolutionize intrapartum monitoring, making sophisticated diagnostic tools accessible to a wider range of healthcare settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call